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Masking

� split every sensitive variable x into t+ 1 shares (xi)0≤i≤t such
that

I for every 1 ≤ i ≤ t, xi is picking uniformly at random
I x0 ← x⊕ x1 ⊕ · · · ⊕ xt

� any strict subvector of at most t shares is independent from x

� t is called masking order or security order
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Leakage Models

� Probing model
I any set of t intermediate variables independent from secrets

� Noisy leakage model
I all noisy functions of intermediate variables are jointly

independent from secrets

� Reduction
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Probing Model

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

7 / 34



Probing Model

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

7 / 34



Probing Model

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

7 / 34



Non-Interference (NI)

� t-NI ⇒ t-probing secure

� a circuit is t-NI iff any set of t intermediate variables can be
perfectly simulated with at most t shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

can be simulated
with x0 and x1
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Non-Interference (NI)

� t-NI ⇒ t-probing secure

� a circuit is t-NI iff any set of t intermediate variables can be
perfectly simulated with at most t shares of each input

Ex-t3
3

observations

x0 x1 x2 x3 (= x+ x0 + x1 + x2)

y0 y1 y2 y3
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Until Recently

� composition probing secure for 2t+ 1 shares

� no solution for t+ 1 shares
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First Proposal

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI) on
AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

⇒ Flaw from t = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)
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Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI) on
AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t
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Second Proposal

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 0 to t do
for j = i+ 1 to t do

r ← $
xi ← xi + r
xj ← xj + r

end for
end for
return [x]

⇒ Formal security proof for any order t
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Strong Non-Interference (SNI)

� t-SNI ⇒ t-NI ⇒ t-probing secure

� a circuit is t-SNI iff any set of t intermediate variables, whose
t1 on the internal variables and t2 and the outputs, can be
perfectly simulated with at most t1 shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

require x0 and x1
to be perfectly
simulated ⇒ not
3-SNI since y0 is
an output variable
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Strong Non-Interference (SNI)

� t-SNI ⇒ t-NI ⇒ t-probing secure

� a circuit is t-SNI iff any set of t intermediate variables, whose
t1 on the internal variables and t2 and the outputs, can be
perfectly simulated with at most t1 shares of each input

Refresh
2 internal

observations

+ 1 output
observation

x0 x1 x2 x3

y0 y1 y2 y3
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Why Does It Works?
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Tool maskComp

� from t-NI and t-SNI gadgets ⇒ build a t-NI circuit by
inserting t-SNI regfresh gadgets at carefully chosen locations

� formally proven

maskComp
Implementation in

C language with

no countermeasure

t-NI secure

implementation

in C language
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Limitations of maskComp

� maskComp adds a refresh gadget to Circuit 1
� but Circuit 1 was already t-probing secure

[x1] [x2]

[+]

[×]

Figure: Circuit 1.

[x1] [x2]

[+]

R

[×]

Figure: Circuit 1 after
maskComp.
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New Proposal

� Joint work with Dahmun Goudarzi and Matthieu Rivain,
published at Asiacrypt 2018

� Apply to standard shared circuits:
I sharewise additions,
I ISW-multiplications,
I ISW-refresh gadgets

� Determine exactly whether a standard shared circuit is probing
secure for any order t

1. Reduction to a simplified problem
2. Resolution of the simplified problem
3. Extension to larger circuits
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First Step: Game 0

ExpReal(A, C):

1: (P, x1, . . . , xn)← A()
2: [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3: (v1, . . . , vt)← C([x1], . . . , [xn])P
4: Return (v1, . . . , vt)

ExpSim(A,S, C):

1: (P, x1, . . . , xn)← A()
2: (v1, . . . , vt)← S(P)
3: Return (v1, . . . , vt)

Figure: t-probing security game.

A shared circuit C is t-probing secure iff ∀ A, ∃ S that wins the
t-probing security game defined in Figure 3, i.e., the random
experiments ExpReal(A, C) and ExpSim(A,S, C) output identical
distributions.
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First Step: Game 1

� Probes on multiplication gadgets are replaced by probes on
their inputs

� Probes on refresh gadgets are replaced by probes on their
input

� Probes on addition gadgets are replaced by probes on their
inputs or their output

[x1] [x2] [x3]

[+] R

[×] [×]

[×] [×]

[v1] [v2]

[v3] [v4]

[v5] [v6]
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First Step: Game 2

� The tight shared circuit can be replaced by a tight shared
circuit of multiplicative depth one with an extended input.

[x1] [x2] [x3]

[+] R

[×] [×]

[×] [×]

[v1] [v2]

[v3] [v4]

[v5] [v6]

[x1] [x2] [x3] [x4] [x5] [x6] [x7] [x8]

[v2]
q

[v3]
q

[v4]
q

[v5]
q

[v6]
q

[+] R

[×] [×][×] [×]

[v1]
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First Step: Game 3

� The attacker is restricted to probes on pairs of multiplication
inputs.

[x1] [x2] [x3] [x4] [x5] [x6] [x7] [x8]

[v2]
q

[v3]
q

[v4]
q

[v5]
q

[v6]
q

[+] R

[×] [×][×] [×]

[v1]
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Second Step: Resolution Method

� for each linear combination [c] that is an operand of a
multiplication, draw a list of multiplications
I G1 = {([c], b1i ); 1 ≤ i ≤ m1}, let U1 =< b1i >
I G2 = G1 ∪ {([c] + U1, b2i ); 1 ≤ i ≤ m2}, let U2 = U1∪ < b2i >
I G3 = G2 ∪ {([c] + U2, b3i ); 1 ≤ i ≤ m3}, let U3 = U2∪ < b3i >
I . . .

� at each step i,
I if [c] ∈ Ui, then stop there is a probing attack on [c]
I if Gi = Gi−1, then stop and consider another combination

26 / 34



Second Step: Example

� Operands are: [c1], [c2], [c3], [c4], and [c5].

� Multiplications are ([c1], [c2]), ([c4], [c5]), and ([c3], [c4]).

1. Consider [c1].
I G1 = ([c1], [c2]) and U1 = [c2]

[x1] = [c1] [x2] = [c2] [x3] = [c3]

[+]

[c4]

[+]

[c5]

[×] [×] [×]
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Second Step: Bitslice AES S-box

� Bitslice implementation from Goudarzi and Rivain
I sharewise additions
I 32 ISW-multiplication gadgets
I 32 ISW-refresh gadgets

� maskComp

I sharewise additions
I 32 ISW-multiplication gadgets
I 32 ISW-refresh gadgets

� New tool: tightPROVE

I sharewise additions
I 32 ISW-multiplication gadgets
I 0 ISW-refresh gadget
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Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit C = C2 ◦ C1 composed of two
sequential circuits:

� a t-probing secure circuit C1 whose outputs are all outputs of
t-SNI gadgets,

� a t-probing secure circuit C2 whose inputs are C1’s outputs.

is t-probing secure.

t-probing secure gadgets

t-SNI gadgets

t-private circuit

t-private circuit
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Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit C = C2 ◦ C1 composed of two
sequential circuits:

� a t-linear surjective circuit C1, exclusively composed of
sharewise additions,

� a t-probing secure circuit C2 whose inputs are C1’s outputs.

is t-probing secure.

t-linear surjective circuit

t-private circuit
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Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit C = C1‖C2 composed of two
parallel t-probing secure circuits which operate on independent
input sharings is t-probing secure.

t-private circuit t-private circuit
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Third Step: SPN Block Ciphers

Proposition. Let C be SPN-
block cipher defined as a tight
shared circuit. If both condi-
tions

1. S’s and KS’s outputs are
t-SNI gadgets’ outputs

2. S and KS are t-probing
secure

are fulfilled, then C is t-
probing secure.

p

⊕
t-linear surjective circuit

S

L⊕
t-linear surjective circuit

S

L⊕

k

KS

KS

KS

. . . . . .

c

t-linear surjective circuit
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Conclusion

In a nutshell...

� Method to exactly determine whether or not a tight shared
circuit is probing secure for any t

� Significant gain in practice

To continue...

� Extend these results to more general circuits

� Apply this method to reduce randomness on existing
applications

34 / 34
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