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What's wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a crisis of
rigor.

S. Halevi, 2005

Do we have a problem with cryptographic proofs? Yes, we do [...]
We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect)

A classical example: RSA-OAEP
From 1994 to 2010, one proof, 5 different papers.



V. Shoup, 2004
Security proofs in cryptography may be organized as sequences of

games [...] this can be a useful tool in taming the complexity of
security proofs that might otherwise become so messy, complicated,
and subtle as to be nearly impossible to verify
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Idealized protocol, where security is

o clear.
Small, verifiable,

transformation.
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Game sequences '
Proofs are still long and difficult to verify entirely for concrete

schemes.

e but this kind of proof is suited for computer-aided verification.
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Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt

proofs.

< automate some game transformations

Game transformations
Three important ingredients:

e Uniformity
e Independence

e Equivalence of distribution
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Computational proofs

Uniformity
Does a message follow the uniform distribution 7

< the attacker learns nothing

Independence (non-interference)
Does a message depend on the distribution of some secret 7

< no information leakage about the secret
Equivalence
Do two messages have the same probability distribution 7

< same attacker behaviour

10
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programs.
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Precise goal
Decide uniformity, independence and equivalence for simple

programs.
Simple programs ?

e inputs/outputs

e datatypes (booleans/bitstrings, F,, DH exponentiation)

e constructs (random sampling, conditionals, bindings)

11



An example




Easycrypt snippet: Cramer Shoup Key generation

x & Fg\ {0}

v,z &Fq

8X,8Y,82 < &°,8”,8°

X1, X2, Y1, Y2, 21, 22 in
81,4a,a1 < 8X,8Y,8Z

k& dk

e+ gl x g

f g’ >1sgf/2

h g7t x gf?

return pk < (k,g,8_,e,f,g)
return sk < (k,g,8 _, X1, X0, Y1, Y2, 21, 22)
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$
X13X27y17y2721w E A .
Xponentiation In
g1,3,a1 < X, 8V, 8 P
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Easycrypt snippet: Cramer Shoup Key generation
Xm Uniform sampling

s in a finite field.
F
y,z < I,

8x,8Y,8Z < 8°,8”,8°

X1.X2, Y1, 2, 21, <i]Fq S :
Variable assign- — 2x,8y,8 Exponentiation in

ment. L dk a group.

e+ gl x g

f g’ >1sg{/2

h g7t x gf?

return pk < (k,g,8_,e,f,g)

return sk < (k,g,8 _, X1, X0, Y1, Y2, 21, 22)
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The EasyCrypt goal

Eascrypt snipet:
x & F,\ {0}
v,z <i Fq
gx,8y,82 < g, 8",8°
X1, X2, Y1, Y2, 21, 22 & F,
g _,3,a_ < gX,8Y,87
k& dk
e glug *
feglxg 72

h «— gzl *g_22
return pk — (k’g>g_7 €, fg)
return sk < (k’gvg_7X17X27ylay2a21722)
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The EasyCrypt goal

Eascrypt snipet:
$
x = Fq \ {o}
¥,z 41 Fg

gx, 8y, 82 + 8%, ¢, 8°

X1, %2,¥1,¥2,71,22 < Fq
g_,a,a_ < gx,8y,82
k(idk
e+ g1« _
f gt *g7y2
22

x2

h— g?1 x g
return pk « (k, 2,2 e, ,g)
return sk < (k, 8,8, x1,%2, Y1, Y2, 71, 22)
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The EasyCrypt goal
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x +— Fq \ {0}
Y,z 41 Fg
gx, gy, 8z + &, 8", &°
X1, X2, ¥1,¥2, 71,22 < Fq
g_,a,a_ <+ gx,gy,87
PRLEN
e g1« _
fe g’ x g7y2
he gl ag 22
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return sk < (k, g, 8, X1,X2,Y1,Y2, 21, 22)
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The EasyCrypt goal

Eascrypt snipet:
$
x = Fq \ {o}
¥,z 41 Fg
gx, 8y, 82 + 8%, ¢, 8°
X1, X2, Y1, Y2, 21,22 + Fq
g_,a,a_ + gx,gy,82
PIRLEP
e +— gXl *g
fe g’ x g7y2
he g7l ag 22
return pk < (k.g.g_.e,f,g)
return sk < (k, g,8_, X1, X2, Y1, Y2, 21, 22)

x2

The attacker sees pk := (k, g, g%, gt gyltxwyz gzlixz)

Is pk independent from x», y» and z ?

13



The probabilistic question

Does this expression follow the uniform distribution?

(k, x, x1 + X% X2, X0, y1 +X*y2, Yo, Z1 + X *x 22, 20)

14



An intuitive characterization

Bijections

f(u) ~ u < f is a bijection
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An intuitive characterization

Is this function a bijection?
(k7X7X17X2aY17YZ721,Z2) —
(kyX, X1 + X % X0, X2, Y1 + X % y2, 2,21 + X * 22, 23)

® X1 +X*kXo —X % Xo0 = X1

16



Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?
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Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

Deducibility
From a set of messages, can we compute some secret.

— Use symbolic methods to perform proofs in the computational
model.

17



Correction and completeness

Deducibility

e Can an attacker deduce a secret 7
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Correction and completeness

Deducibility
e Can an attacker deduce a secret 7
o Always correct (a symbolic attack is a computational attack)

o Not always computationally complete (may miss attacks).

— We only need the correction to have a witness of uniformity.

18



A general Framework




Programs

Variables
o Aset X =(x,y,z,...) of deterministic variables;

e aset R=(u,v,w,...) of random variables.

Programs
A program is a sequence of terms built over t € T(X, X & R).

19



Programs examples

Examples

o P({xyhAu}) = (x+u,y,xv)
o P({x,y},{u,v,w}) = (uv+ vw + wu + xy)
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Programs examples

Input : X,y
Sample uniformly u
Return (x + u,y, xy)

Examples

o P({xyhAu}) = (x+u,y,xv)
o P({x,y},{u,v,w}) = (uv+ vw + wu + xy)



Programs examples

Input : X,y
Sample uniformly u
Return (x + u,y, xy)

P({x,y},{u}) = (x+ u,y,xy)
P({x,y},{u,v,w}) = (uv + vw + wu + xy) 4\

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)

20



Probabilistic relations

The framework
Terms and Programs:  Pi(X,R) € T(X,X W R)
P(X,R) = Py(X,R), ..., P«(X,R)
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Probabilistic relations

The framework
Terms and Programs:  Pi(X,R) € T(X,X W R)
P(X,R) = Py(X,R), ..., P«(X,R)

Relations
Uniformity P(X,R)~ R
Independence P(X,R) L R
Equivalence ~ P(X,R) ~ Q(X,R)

21



Encodings

P(X,R) ~ R’
/ P(R) ~ R’

P(XWY,R)

\ (R) P(R)
P(X,R) ~

22



Summary of the symbolic abstractions

Deduction
Uniformity for P(X, R) of length |R| < Deduction.

Unification and deduction constraints
Equivalence < unification and deduction constraints (with private

homomorphic symbol).

Static equivalence
Equivalence = static equivalence.

23



Summary of the symbolic abstractions

Deduction
Uniformity for P(X, R) of length |R| < Deduction.

Unification and deduction constraints
Equivalence < unification and deduction constraints (with private

homomorphic symbol).

Static equivalence
Equivalence = static equivalence.

— We obtain connections with widely studied questions

23



The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational

theories.
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The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational

theories.

e If a program follows the uniform distribution when sampling
over a ring of characteristic two, it also does when sampling

over any Foq.

e If two programs are not equivalent when sampling over Fy,
they are not equivalent over a ring of characteristic two.

24



The abstraction

Modular
There are many combination results for symbolic methods.
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The abstraction

Modular
There are many combination results for symbolic methods.

e Easy to add support for free function symbols, or bilinear
pairings, or any disjoint equational theories.

25



Implementation




A generic library

SolvEq
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A generic library

SolvEq
EasyCrypt
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fields;
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A generic library

SolvEq

EasyCrypt MaskVerif

e handles deduction and static equivalence in rings and finite
fields;
e procedures/heuristics for uniformity (bijection computations)

and independence.
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Easycrypt

Sample of Cramer Shoup proofs

swap{1} 16 -9; wp; swap -1; swap -1.
rnd (fun z = z + G1l.w{2} * G1.z2{2})
(fun z = z - Gl.w{2} * G1.z2{2}).
rnd.

wp; swap -1.

rnd (fun z = z + G1.w{2} * G1.y2{2})
(fun z = z - G1.w{2} * Gi.y2{2}).
rnd.

wp; swap -1.

rnd (fun z = z + Gl.w{2} * G1.x2{2})
(fun z = z - Gl.w{2} * G1.x2{2}).
rnd; wp; rnd; wp.

rnd (fun z = z / x{1}) (fun z = z * x{1}) = /=.

27



Easycrypt

Sample of Cramer Shoup proofs
17 tactic calls replaced by a single tactic, with content extracted

from cryptographic intuition.

rndmatch

(z1,
(z2,
(y1,
(y2,
(x1,
(x2,

(k
(z
(y
(x

>

>

>

>

Gl.z, fun z =
G1.z2)
Gl.y, fun z =
G1.y2)
Gl.x, fun z =
G1.x2)
Gl.k )
x , fun z = =z
Gl.u )
Gl.w ).

z + G1.w{2} * G1.z2{2})
z + G1.w{2} * G1.y2{2})

z + G1.w{2} * G1.x2{2})

/ x{1})
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MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

v Very fast;

v/ a lot of examples covered.
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MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

&

" Very fast;
v/ a lot of examples covered.

% No information when heuristic fails;

X

no negative results;

% heuristic may fail for simple examples.

Improvements
o Witnesses of negative results

e New examples not covered by the old heuristic

29



Conclusion
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computational model.
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Final words

The general idea
Use symbolic methods to simplify basic proof steps in the

computational model.

e Link different probabilistic problems;
e abstracted into term algebras;

e derive algorithms from symbolic methods that are principled,

sound and/or complete;

e implement and integrate the resulting algorithms inside
existing tools.
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Final words

Future work
e automate the application of cryptographic assumptions;
e automate the verification of MPC protocols;

e find an efficient algorithm for general equivalence in finite
fields.
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