
Symbolic methods in computational
cryptography proofs

G. Barthes, B.Grégoire, Charlie Jacomme, S. Kremer, P-Y. Strub

26 June, 2019

LSV (ENS Paris-Saclay) and LORIA (INRIA Nancy)

Introduction

Secure protocols

Security proofs

• Precise definitions of security;

• precise modelling of the protocol;

• clear assumptions.

Many, many, many security proofs in the computational model.

So, are we happy ?

1

Secure protocols

Security proofs

• Precise definitions of security;

• precise modelling of the protocol;

• clear assumptions.

Many, many, many security proofs in the computational model.

So, are we happy ?

1

Secure protocols

Security proofs

• Precise definitions of security;

• precise modelling of the protocol;

• clear assumptions.

Many, many, many security proofs in the computational model.

So, are we happy ?

1

What’s wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis of
rigor.

S. Halevi, 2005
Do we have a problem with cryptographic proofs? Yes, we do [...]
We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect)

A classical example: RSA-OAEP
From 1994 to 2010, one proof, 5 different papers.

2

What’s wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis of
rigor.

S. Halevi, 2005
Do we have a problem with cryptographic proofs? Yes, we do [...]
We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect)

A classical example: RSA-OAEP
From 1994 to 2010, one proof, 5 different papers.

2

What’s wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis of
rigor.

S. Halevi, 2005
Do we have a problem with cryptographic proofs? Yes, we do [...]
We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect)

A classical example: RSA-OAEP
From 1994 to 2010, one proof, 5 different papers.

2

A new hope

V. Shoup, 2004
Security proofs in cryptography may be organized as sequences of
games [...] this can be a useful tool in taming the complexity of
security proofs that might otherwise become so messy, complicated,
and subtle as to be nearly impossible to verify

3

A new hope

Game sequences

ì O ì

4

A new hope

Game sequences

ì O ì

Realistic model of the protocol.

4

A new hope

Game sequences

ì O ì

Realistic model of the protocol.

Idealized protocol, where security is
clear.

4

A new hope

Game sequences

ì O ì

Realistic model of the protocol.

Idealized protocol, where security is
clear.

Small, verifiable,
transformation.

4

A new hope

Game sequences
Proofs should be easily verifiable, because only based on small
transformations.

So, are we happy ?

5

A new hope

Game sequences
Proofs should be easily verifiable, because only based on small
transformations.

So, are we happy ?

5

A new hope

Game sequences
Proofs are still long and difficult to verify entirely for concrete
schemes.

• but this kind of proof is suited for computer-aided verification.

6

A new hope

Game sequences
Proofs are still long and difficult to verify entirely for concrete
schemes.

• but this kind of proof is suited for computer-aided verification.

6

A new new hope

Mechanized provers
CryptoHol, CryptoVerif, Easycrypt, FCF . . .

Easycrypt
An interactive prover to write formal proofs through game
sequences.

So, are we happy ?

7

A new new hope

Mechanized provers
CryptoHol, CryptoVerif, Easycrypt, FCF . . .

Easycrypt
An interactive prover to write formal proofs through game
sequences.

So, are we happy ?

7

A new new hope

Mechanized provers
CryptoHol, CryptoVerif, Easycrypt, FCF . . .

Easycrypt
An interactive prover to write formal proofs through game
sequences.

So, are we happy ?

7

The current challenge

Intuition VS EasyCrypt

8

The current challenge

Intuition VS EasyCrypt

8

The current challenge

Intuition VS EasyCrypt

8

Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt
proofs.

↪→ automate some game transformations

Game transformations
Three important ingredients:

• Uniformity

• Independence

• Equivalence of distribution

9

Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt
proofs.

↪→ automate some game transformations

Game transformations
Three important ingredients:

• Uniformity

• Independence

• Equivalence of distribution

9

Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt
proofs.

↪→ automate some game transformations

Game transformations
Three important ingredients:

• Uniformity

• Independence

• Equivalence of distribution

9

Computational proofs

Uniformity
Does a message follow the uniform distribution ?

↪→ the attacker learns nothing

Independence (non-interference)
Does a message depend on the distribution of some secret ?

↪→ no information leakage about the secret

Equivalence
Do two messages have the same probability distribution ?

↪→ same attacker behaviour

10

Computational proofs

Uniformity
Does a message follow the uniform distribution ?

↪→ the attacker learns nothing

Independence (non-interference)
Does a message depend on the distribution of some secret ?

↪→ no information leakage about the secret

Equivalence
Do two messages have the same probability distribution ?

↪→ same attacker behaviour

10

Computational proofs

Uniformity
Does a message follow the uniform distribution ?

↪→ the attacker learns nothing

Independence (non-interference)
Does a message depend on the distribution of some secret ?

↪→ no information leakage about the secret

Equivalence
Do two messages have the same probability distribution ?

↪→ same attacker behaviour

10

Goal

Precise goal
Decide uniformity, independence and equivalence for simple
programs.

Simple programs ?

• inputs/outputs

• datatypes (booleans/bitstrings, Fq, DH exponentiation)

• constructs (random sampling, conditionals, bindings)

11

Goal

Precise goal
Decide uniformity, independence and equivalence for simple
programs.

Simple programs ?

• inputs/outputs

• datatypes (booleans/bitstrings, Fq, DH exponentiation)

• constructs (random sampling, conditionals, bindings)

11

An example

Easycrypt snippet: Cramer Shoup Key generation

x
$←− Fq \ {0}

y , z
$←− Fq

gx , gy , gz ← g x , g y , g z

x1, x2, y1, y2, z1, z2
$←− Fq

g1, a, a1 ← gx , gy , gz

k
$←− dk

e ← g x1 ∗ g x2
1

f ← g y1 ∗ g y2
1

h← g z1 ∗ g z2
1

return pk ← (k , g , g_, e, f , g)

return sk ← (k , g , g_, x1, x2, y1, y2, z1, z2)

12

Easycrypt snippet: Cramer Shoup Key generation

x
$←− Fq \ {0}

y , z
$←− Fq

gx , gy , gz ← g x , g y , g z

x1, x2, y1, y2, z1, z2
$←− Fq

g1, a, a1 ← gx , gy , gz

k
$←− dk

e ← g x1 ∗ g x2
1

f ← g y1 ∗ g y2
1

h← g z1 ∗ g z2
1

return pk ← (k , g , g_, e, f , g)

return sk ← (k , g , g_, x1, x2, y1, y2, z1, z2)

Uniform sampling
in a finite field.

12

Easycrypt snippet: Cramer Shoup Key generation

x
$←− Fq \ {0}

y , z
$←− Fq

gx , gy , gz ← g x , g y , g z

x1, x2, y1, y2, z1, z2
$←− Fq

g1, a, a1 ← gx , gy , gz

k
$←− dk

e ← g x1 ∗ g x2
1

f ← g y1 ∗ g y2
1

h← g z1 ∗ g z2
1

return pk ← (k , g , g_, e, f , g)

return sk ← (k , g , g_, x1, x2, y1, y2, z1, z2)

Uniform sampling
in a finite field.

Exponentiation in
a group.

12

Easycrypt snippet: Cramer Shoup Key generation

x
$←− Fq \ {0}

y , z
$←− Fq

gx , gy , gz ← g x , g y , g z

x1, x2, y1, y2, z1, z2
$←− Fq

g1, a, a1 ← gx , gy , gz

k
$←− dk

e ← g x1 ∗ g x2
1

f ← g y1 ∗ g y2
1

h← g z1 ∗ g z2
1

return pk ← (k , g , g_, e, f , g)

return sk ← (k , g , g_, x1, x2, y1, y2, z1, z2)

Uniform sampling
in a finite field.

Exponentiation in
a group.

Variable assign-
ment.

12

The EasyCrypt goal

Eascrypt snipet:

x
$←− Fq \ {0}

y , z
$←− Fq

gx , gy , gz ← g x , g y , g z

x1, x2, y1, y2, z1, z2
$←− Fq

g_, a, a_← gx , gy , gz

k
$←− dk

e ← g x1 ∗ g_x2

f ← g y1 ∗ g_y2

h← g z1 ∗ g_z2

return pk ← (k , g , g_, e, f , g)

return sk ← (k , g , g_, x1, x2, y1, y2, z1, z2)

Eascrypt snipet:

x
$←− Fq \ {0}

y, z
$←− Fq

gx, gy, gz ← gx , gy , gz

x1, x2, y1, y2, z1, z2
$←− Fq

g_, a, a_ ← gx, gy, gz

k
$←− dk

e ← gx1 ∗ g_x2

f ← gy1 ∗ g_y2

h ← gz1 ∗ g_z2

return pk ← (k, g, g_, e, f , g)

return sk ← (k, g, g_, x1, x2, y1, y2, z1, z2)

The attacker sees pk := (k , g , g x , g x1+x∗x2 , g y1+x∗y2 , g z1+x∗z2)

Is pk independent from x2, y2 and z2 ?

13

The EasyCrypt goal

Eascrypt snipet:

x
$←− Fq \ {0}

y, z
$←− Fq

gx, gy, gz ← gx , gy , gz

x1, x2, y1, y2, z1, z2
$←− Fq

g_, a, a_ ← gx, gy, gz

k
$←− dk

e ← gx1 ∗ g_x2

f ← gy1 ∗ g_y2

h ← gz1 ∗ g_z2

return pk ← (k, g, g_, e, f , g)

return sk ← (k, g, g_, x1, x2, y1, y2, z1, z2)

The attacker sees pk := (k , g , g x , g x1+x∗x2 , g y1+x∗y2 , g z1+x∗z2)

Is pk independent from x2, y2 and z2 ?

13

The EasyCrypt goal

Eascrypt snipet:

x
$←− Fq \ {0}

y, z
$←− Fq

gx, gy, gz ← gx , gy , gz

x1, x2, y1, y2, z1, z2
$←− Fq

g_, a, a_ ← gx, gy, gz

k
$←− dk

e ← gx1 ∗ g_x2

f ← gy1 ∗ g_y2

h ← gz1 ∗ g_z2

return pk ← (k, g, g_, e, f , g)

return sk ← (k, g, g_, x1, x2, y1, y2, z1, z2)

The attacker sees pk := (k , g , g x , g x1+x∗x2 , g y1+x∗y2 , g z1+x∗z2)

Is pk independent from x2, y2 and z2 ?

13

The EasyCrypt goal

Eascrypt snipet:

x
$←− Fq \ {0}

y, z
$←− Fq

gx, gy, gz ← gx , gy , gz

x1, x2, y1, y2, z1, z2
$←− Fq

g_, a, a_ ← gx, gy, gz

k
$←− dk

e ← gx1 ∗ g_x2

f ← gy1 ∗ g_y2

h ← gz1 ∗ g_z2

return pk ← (k, g, g_, e, f , g)

return sk ← (k, g, g_, x1, x2, y1, y2, z1, z2)

The attacker sees pk := (k , g , g x , g x1+x∗x2 , g y1+x∗y2 , g z1+x∗z2)

Is pk independent from x2, y2 and z2 ?

13

The probabilistic question

Does this expression follow the uniform distribution?

(k , x , x1 + x ∗ x2, x2, y1 + x ∗ y2, y2, z1 + x ∗ z2, z2)

14

An intuitive characterization

Bijections

f (u) ' u ⇔ f is a bijection

f (u, v ,w) ' (u, v ,w)⇔ f is a bijection

15

An intuitive characterization

Bijections

f (u) ' u ⇔ f is a bijection

f (u, v ,w) ' (u, v ,w)⇔ f is a bijection

15

An intuitive characterization

Is this function a bijection?
(k, x , x1, x2, y1, y2, z1, z2) 7→

(k , x , x1 + x ∗ x2, x2, y1 + x ∗ y2, y2, z1 + x ∗ z2, z2)

• x1 + x ∗ x2 −x ∗ x2 = x1

16

An intuitive characterization

Is this function a bijection?
(k, x , x1, x2, y1, y2, z1, z2) 7→

(k , x , x1 + x ∗ x2, x2, y1 + x ∗ y2, y2, z1 + x ∗ z2, z2)

• x1 + x ∗ x2

−x ∗ x2 = x1

16

An intuitive characterization

Is this function a bijection?
(k, x , x1, x2, y1, y2, z1, z2) 7→

(k , x , x1 + x ∗ x2, x2, y1 + x ∗ y2, y2, z1 + x ∗ z2, z2)

• x1 + x ∗ x2 −x

∗ x2 = x1

16

An intuitive characterization

Is this function a bijection?
(k, x , x1, x2, y1, y2, z1, z2) 7→

(k , x , x1 + x ∗ x2, x2, y1 + x ∗ y2, y2, z1 + x ∗ z2, z2)

• x1 + x ∗ x2 −x ∗ x2

= x1

16

An intuitive characterization

Is this function a bijection?
(k, x , x1, x2, y1, y2, z1, z2) 7→

(k , x , x1 + x ∗ x2, x2, y1 + x ∗ y2, y2, z1 + x ∗ z2, z2)

• x1 + x ∗ x2 −x ∗ x2 = x1

16

Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

Deducibility
From a set of messages, can we compute some secret.

↪→ Use symbolic methods to perform proofs in the computational
model.

17

Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

Deducibility
From a set of messages, can we compute some secret.

↪→ Use symbolic methods to perform proofs in the computational
model.

17

Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

Deducibility
From a set of messages, can we compute some secret.

↪→ Use symbolic methods to perform proofs in the computational
model.

17

Correction and completeness

Deducibility

• Can an attacker deduce a secret ?

• Always correct (a symbolic attack is a computational attack)

• Not always computationally complete (may miss attacks).

↪→ We only need the correction to have a witness of uniformity.

18

Correction and completeness

Deducibility

• Can an attacker deduce a secret ?

• Always correct (a symbolic attack is a computational attack)

• Not always computationally complete (may miss attacks).

↪→ We only need the correction to have a witness of uniformity.

18

Correction and completeness

Deducibility

• Can an attacker deduce a secret ?

• Always correct (a symbolic attack is a computational attack)

• Not always computationally complete (may miss attacks).

↪→ We only need the correction to have a witness of uniformity.

18

A general Framework

Programs

Variables

• A set X = (x , y , z , . . .) of deterministic variables;

• a set R = (u, v ,w , . . .) of random variables.

Programs
A program is a sequence of terms built over t ∈ T (Σ,X] R).

19

Programs examples

Examples

• P({x , y}, {u}) = (x + u, y , xy)

• P({x , y}, {u, v ,w}) = (uv + vw + wu + xy)

20

Programs examples

Examples

• P({x , y}, {u}) = (x + u, y , xy)

• P({x , y}, {u, v ,w}) = (uv + vw + wu + xy)

Input : x,y
Sample uniformly u
Return (x + u, y , xy)

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)

20

Programs examples

Examples

• P({x , y}, {u}) = (x + u, y , xy)

• P({x , y}, {u, v ,w}) = (uv + vw + wu + xy)

Input : x,y
Sample uniformly u
Return (x + u, y , xy)

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)

20

Probabilistic relations

The framework
Terms and Programs: P1(X ,R) ∈ T (Σ,X] R)

P(X ,R) = P1(X ,R), . . . ,Pk(X ,R)

Relations

Uniformity P(X ,R) ' R

Independence P(X ,R) ⊥ R

Equivalence P(X ,R) ' Q(X ,R)

21

Probabilistic relations

The framework
Terms and Programs: P1(X ,R) ∈ T (Σ,X] R)

P(X ,R) = P1(X ,R), . . . ,Pk(X ,R)

Relations

Uniformity P(X ,R) ' R

Independence P(X ,R) ⊥ R

Equivalence P(X ,R) ' Q(X ,R)

21

Encodings

P(X] Y ,R) ⊥ X

P(X ,R) ' Q(X ,R)

P(X ,R) ' R ′

P(R) ' P(R ′)

P(R) ' R ′

22

Summary of the symbolic abstractions

Deduction
Uniformity for P(X ,R) of length |R| ⇔ Deduction.

Unification and deduction constraints
Equivalence ⇔ unification and deduction constraints (with private
homomorphic symbol).

Static equivalence
Equivalence ⇒ static equivalence.

↪→ We obtain connections with widely studied questions

23

Summary of the symbolic abstractions

Deduction
Uniformity for P(X ,R) of length |R| ⇔ Deduction.

Unification and deduction constraints
Equivalence ⇔ unification and deduction constraints (with private
homomorphic symbol).

Static equivalence
Equivalence ⇒ static equivalence.

↪→ We obtain connections with widely studied questions

23

The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational
theories.

• If a program follows the uniform distribution when sampling
over a ring of characteristic two, it also does when sampling
over any F2q .

• If two programs are not equivalent when sampling over F2,
they are not equivalent over a ring of characteristic two.

24

The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational
theories.

• If a program follows the uniform distribution when sampling
over a ring of characteristic two, it also does when sampling
over any F2q .

• If two programs are not equivalent when sampling over F2,
they are not equivalent over a ring of characteristic two.

24

The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational
theories.

• If a program follows the uniform distribution when sampling
over a ring of characteristic two, it also does when sampling
over any F2q .

• If two programs are not equivalent when sampling over F2,
they are not equivalent over a ring of characteristic two.

24

The abstraction

Modular
There are many combination results for symbolic methods.

• Easy to add support for free function symbols, or bilinear
pairings, or any disjoint equational theories.

25

The abstraction

Modular
There are many combination results for symbolic methods.

• Easy to add support for free function symbols, or bilinear
pairings, or any disjoint equational theories.

25

Implementation

A generic library

SolvEq

EasyCrypt MaskVerif

• handles deduction and static equivalence in rings and finite
fields;

• procedures/heuristics for uniformity (bijection computations)
and independence.

26

A generic library

SolvEq

EasyCrypt MaskVerif

• handles deduction and static equivalence in rings and finite
fields;

• procedures/heuristics for uniformity (bijection computations)
and independence.

26

A generic library

SolvEq

EasyCrypt MaskVerif

• handles deduction and static equivalence in rings and finite
fields;

• procedures/heuristics for uniformity (bijection computations)
and independence.

26

A generic library

SolvEq

EasyCrypt

MaskVerif

• handles deduction and static equivalence in rings and finite
fields;

• procedures/heuristics for uniformity (bijection computations)
and independence.

26

A generic library

SolvEq

EasyCrypt MaskVerif

• handles deduction and static equivalence in rings and finite
fields;

• procedures/heuristics for uniformity (bijection computations)
and independence.

26

Easycrypt

Sample of Cramer Shoup proofs

swap{1} 16 -9; wp; swap -1; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.z2{2})
(fun z ⇒ z - G1.w{2} * G1.z2{2}).
rnd.
wp; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.y2{2})
(fun z ⇒ z - G1.w{2} * G1.y2{2}).
rnd.
wp; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.x2{2})
(fun z ⇒ z - G1.w{2} * G1.x2{2}).
rnd; wp; rnd; wp.
rnd (fun z ⇒ z / x{1}) (fun z ⇒ z * x{1}) ⇒ /=.

27

Easycrypt

Sample of Cramer Shoup proofs
17 tactic calls replaced by a single tactic, with content extracted
from cryptographic intuition.

rndmatch
(z1, G1.z, fun z ⇒ z + G1.w{2} * G1.z2{2})
(z2, G1.z2)
(y1, G1.y, fun z ⇒ z + G1.w{2} * G1.y2{2})
(y2, G1.y2)
(x1, G1.x, fun z ⇒ z + G1.w{2} * G1.x2{2})
(x2, G1.x2)
(k , G1.k)
(z , x , fun z ⇒ z / x{1})
(y , G1.u)
(x , G1.w).

28

MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

X Very fast;

X a lot of examples covered.

× No information when heuristic fails;

× no negative results;

× heuristic may fail for simple examples.

Improvements

• Witnesses of negative results

• New examples not covered by the old heuristic

29

MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

X Very fast;

X a lot of examples covered.

× No information when heuristic fails;

× no negative results;

× heuristic may fail for simple examples.

Improvements

• Witnesses of negative results

• New examples not covered by the old heuristic

29

MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

X Very fast;

X a lot of examples covered.

× No information when heuristic fails;

× no negative results;

× heuristic may fail for simple examples.

Improvements

• Witnesses of negative results

• New examples not covered by the old heuristic

29

Conclusion

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the
computational model.

• Link different probabilistic problems;

• abstracted into term algebras;

• derive algorithms from symbolic methods that are principled,
sound and/or complete;

• implement and integrate the resulting algorithms inside
existing tools.

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the
computational model.

• Link different probabilistic problems;

• abstracted into term algebras;

• derive algorithms from symbolic methods that are principled,
sound and/or complete;

• implement and integrate the resulting algorithms inside
existing tools.

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the
computational model.

• Link different probabilistic problems;

• abstracted into term algebras;

• derive algorithms from symbolic methods that are principled,
sound and/or complete;

• implement and integrate the resulting algorithms inside
existing tools.

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the
computational model.

• Link different probabilistic problems;

• abstracted into term algebras;

• derive algorithms from symbolic methods that are principled,
sound and/or complete;

• implement and integrate the resulting algorithms inside
existing tools.

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the
computational model.

• Link different probabilistic problems;

• abstracted into term algebras;

• derive algorithms from symbolic methods that are principled,
sound and/or complete;

• implement and integrate the resulting algorithms inside
existing tools.

30

Final words

Future work

• automate the application of cryptographic assumptions;

• automate the verification of MPC protocols;

• find an efficient algorithm for general equivalence in finite
fields.

31

	Introduction
	An example
	A general Framework
	Implementation
	Conclusion

