Symbolic methods in computational
cryptography proofs

G. Barthes, B.Grégoire, Charlie Jacomme, S. Kremer, P-Y. Strub
26 June, 2019

LSV (ENS Paris-Saclay) and LORIA (INRIA Nancy)

Introduction

Secure protocols

Security proofs
e Precise definitions of security;
e precise modelling of the protocol;

e clear assumptions.

Secure protocols

Security proofs
e Precise definitions of security;
e precise modelling of the protocol;

e clear assumptions.

Many, many, many security proofs in the computational model.

Secure protocols

Security proofs
e Precise definitions of security;
e precise modelling of the protocol;

e clear assumptions.

Many, many, many security proofs in the computational model.

So, are we happy ?

What's wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a crisis of

rigor.

What's wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a crisis of
rigor.

S. Halevi, 2005

Do we have a problem with cryptographic proofs? Yes, we do [...]
We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect)

What's wrong with cryptographic proofs ?

M. Bellare and P. Rogaway, 2004-2006
In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a crisis of
rigor.

S. Halevi, 2005

Do we have a problem with cryptographic proofs? Yes, we do [...]
We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect)

A classical example: RSA-OAEP
From 1994 to 2010, one proof, 5 different papers.

V. Shoup, 2004
Security proofs in cryptography may be organized as sequences of

games [...] this can be a useful tool in taming the complexity of
security proofs that might otherwise become so messy, complicated,
and subtle as to be nearly impossible to verify

il
|

|
il

Realistic model of the protocol.

Realistic model of the protocol.

4

Idealized protocol, where security is
clear.

Realistic model of the protocol.

4

Idealized protocol, where security is

o clear.
Small, verifiable,

transformation.

Game sequences
Proofs should be easily verifiable, because only based on small

transformations.

Game sequences
Proofs should be easily verifiable, because only based on small

transformations.

So, are we happy 7

Game sequences '
Proofs are still long and difficult to verify entirely for concrete

schemes.

Game sequences '
Proofs are still long and difficult to verify entirely for concrete

schemes.

e but this kind of proof is suited for computer-aided verification.

Mechanized provers
CryptoHol, CryptoVerif, Easycrypt, FCF ...

Mechanized provers
CryptoHol, CryptoVerif, Easycrypt, FCF ...

Easycrypt
An interactive prover to write formal proofs through game

sequences.

Mechanized provers
CryptoHol, CryptoVerif, Easycrypt, FCF ...

Easycrypt
An interactive prover to write formal proofs through game

sequences.

So, are we happy ?

The current challenge

Intuition VS EasyCrypt

The current challenge

Intuition VS EasyCrypt

The current challenge

Intuition VS EasyCrypt

Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt

proofs.

Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt

proofs.

< automate some game transformations

Our general goal

Automation
Reduce distance between pen and paper proofs and Easycrypt

proofs.

< automate some game transformations

Game transformations
Three important ingredients:

e Uniformity
e Independence

e Equivalence of distribution

Computational proofs

Uniformity
Does a message follow the uniform distribution 7

< the attacker learns nothing

10

Computational proofs

Uniformity
Does a message follow the uniform distribution 7

< the attacker learns nothing
Independence (non-interference)
Does a message depend on the distribution of some secret 7

< no information leakage about the secret

10

Computational proofs

Uniformity
Does a message follow the uniform distribution 7

< the attacker learns nothing

Independence (non-interference)
Does a message depend on the distribution of some secret 7

< no information leakage about the secret
Equivalence
Do two messages have the same probability distribution 7

< same attacker behaviour

10

Precise goal
Decide uniformity, independence and equivalence for simple

programs.

11

Precise goal
Decide uniformity, independence and equivalence for simple

programs.
Simple programs ?

e inputs/outputs

e datatypes (booleans/bitstrings, F,, DH exponentiation)

e constructs (random sampling, conditionals, bindings)

11

An example

Easycrypt snippet: Cramer Shoup Key generation

x & Fg\ {0}

v,z &Fq

8X,8Y,82 < &°,8”,8°

X1, X2, Y1, Y2, 21, 22 in
81,4a,a1 < 8X,8Y,8Z

k& dk

e+ gl x g

f g’ >1sgf/2

h g7t x gf?

return pk < (k,g,8_,e,f,g)
return sk < (k,g,8 _, X1, X0, Y1, Y2, 21, 22)

12

Easycrypt snippet: Cramer Shoup Key generation
X@Z\{O}\ Uniform sampling

s in a finite field.
F
y,z < I,

8X,8Y,82 < &°,8”,8°

X1, X2, Y1, Y2, 21, 22 in

81,4a,a1 < 8X,8Y,8Z

k& dk

e+ gl x g

f g’ >1sgf/2

h g7t x gf?

return pk < (k,g,8_,e,f,g)

return sk < (k,g,8 _, X1, X0, Y1, Y2, 21, 22)

12

Easycrypt snippet: Cramer Shoup Key generation
X@Z\{O}\ Uniform sampling

s in a finite field.
F
Y,Z < q

gx,8Y,8Z < g°,8”,8°

$
X13X27y17y2721w E A .
Xponentiation In
g1,3,a1 < X, 8V, 8 P

LS a group.

e+ gl x g

f g’ >1sgf/2

h g7t x gf?

return pk < (k,g,8_,e,f,g)

return sk < (k,g,8 _, X1, X0, Y1, Y2, 21, 22)

12

Easycrypt snippet: Cramer Shoup Key generation
Xm Uniform sampling

s in a finite field.
F
y,z < I,

8x,8Y,8Z < 8°,8”,8°

X1.X2, Y1, 2, 21, <i]Fq S :
Variable assign- — 2x,8y,8 Exponentiation in

ment. L dk a group.

e+ gl x g

f g’ >1sg{/2

h g7t x gf?

return pk < (k,g,8_,e,f,g)

return sk < (k,g,8 _, X1, X0, Y1, Y2, 21, 22)

12

The EasyCrypt goal

Eascrypt snipet:
x & F,\ {0}
v,z <i Fq
gx,8y,82 < g, 8",8°
X1, X2, Y1, Y2, 21, 22 & F,
g _,3,a_ < gX,8Y,87
k& dk
e glug *
feglxg 72

h «— gzl *g_22
return pk — (k’g>g_7 €, fg)
return sk < (k’gvg_7X17X27ylay2a21722)

13

The EasyCrypt goal

Eascrypt snipet:
$
x = Fq \ {o}
¥,z 41 Fg

gx, 8y, 82 + 8%, ¢, 8°

X1, %2,¥1,¥2,71,22 < Fq
g_,a,a_ < gx,8y,82
k(idk
e+ g1« _
f gt *g7y2
22

x2

h— g?1 x g
return pk « (k, 2,2 e, ,g)
return sk < (k, 8,8, x1,%2, Y1, Y2, 71, 22)

13

The EasyCrypt goal

Eascrypt snipet:
$
x +— Fq \ {0}
Y,z 41 Fg
gx, gy, 8z + &, 8", &°
X1, X2, ¥1,¥2, 71,22 < Fq
g_,a,a_ <+ gx,gy,87
PRLEN
e g1« _
fe g’ x g7y2
he gl ag 22
return pk < (k,g,8_, e, f,g)
return sk < (k, g, 8, X1,X2,Y1,Y2, 21, 22)

x2

The attacker sees pk := (k, g, g%, gt gyltxwyz gzlixz)

13

The EasyCrypt goal

Eascrypt snipet:
$
x = Fq \ {o}
¥,z 41 Fg
gx, 8y, 82 + 8%, ¢, 8°
X1, X2, Y1, Y2, 21,22 + Fq
g_,a,a_ + gx,gy,82
PIRLEP
e +— gXl *g
fe g’ x g7y2
he g7l ag 22
return pk < (k.g.g_.e,f,g)
return sk < (k, g,8_, X1, X2, Y1, Y2, 21, 22)

x2

The attacker sees pk := (k, g, g%, gt gyltxwyz gzlixz)

Is pk independent from x», y» and z ?

13

The probabilistic question

Does this expression follow the uniform distribution?

(k, x, x1 + X% X2, X0, y1 +X*y2, Yo, Z1 + X *x 22, 20)

14

An intuitive characterization

Bijections

f(u) ~ u < f is a bijection

15

An intuitive characterization

Bijections

f(u) ~ u < f is a bijection

f(u,v,w)~ (u,v,w) < f is a bijection

15

An intuitive characterization

Is this function a bijection?
(k7X7X17X2aY17YZ721,Z2) —
(kyX, X1 + X % X0, X2, Y1 + X % y2, 2,21 + X * 22, 23)

16

An intuitive characterization

Is this function a bijection?
(k7X7X17X2aY17YZ721,Z2) —
(ky X, X1 + X * X0, X2, Y1 + X % y2, 2,21 + X * 22, 23)

® X1 + X * Xo

16

An intuitive characterization

Is this function a bijection?
(k7X7X17X2aY17YZ721,Z2) —
(ky X, X1 + X * X2, X2, Y1 + X % y2, 2,21 + X * 22, 23)

® X1+ X*Xo —X

16

An intuitive characterization

Is this function a bijection?
(k7X7X17X2aY17YZ721,Z2) —
(kyX, X1 + X * X2, X0, Y1 + X % y2, 2,21 + X * 22, 23)

® X1+ X*kXo —X * Xp

16

An intuitive characterization

Is this function a bijection?
(k7X7X17X2aY17YZ721,Z2) —
(kyX, X1 + X % X0, X2, Y1 + X % y2, 2,21 + X * 22, 23)

® X1 +X*kXo —X % Xo0 = X1

16

Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

17

Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

Deducibility
From a set of messages, can we compute some secret.

17

Symbolic methods

Our question
Only from the outputs of the function, can we compute the inputs ?

Deducibility
From a set of messages, can we compute some secret.

— Use symbolic methods to perform proofs in the computational
model.

17

Correction and completeness

Deducibility

e Can an attacker deduce a secret 7

18

Correction and completeness

Deducibility
e Can an attacker deduce a secret 7

o Always correct (a symbolic attack is a computational attack)

18

Correction and completeness

Deducibility
e Can an attacker deduce a secret 7
o Always correct (a symbolic attack is a computational attack)

o Not always computationally complete (may miss attacks).

— We only need the correction to have a witness of uniformity.

18

A general Framework

Programs

Variables
o Aset X =(x,y,z,...) of deterministic variables;

e aset R=(u,v,w,...) of random variables.

Programs
A program is a sequence of terms built over t € T(X, X & R).

19

Programs examples

Examples

o P({xyhAu}) = (x+u,y,xv)
o P({x,y},{u,v,w}) = (uv+ vw + wu + xy)

20

Programs examples

Input : X,y
Sample uniformly u
Return (x + u,y, xy)

Examples

o P({xyhAu}) = (x+u,y,xv)
o P({x,y},{u,v,w}) = (uv+ vw + wu + xy)

Programs examples

Input : X,y
Sample uniformly u
Return (x + u,y, xy)

P({x,y},{u}) = (x+ u,y,xy)
P({x,y},{u,v,w}) = (uv + vw + wu + xy) 4\

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)

20

Probabilistic relations

The framework
Terms and Programs: Pi(X,R) € T(X,X W R)
P(X,R) = Py(X,R), ..., P«(X,R)

21

Probabilistic relations

The framework
Terms and Programs: Pi(X,R) € T(X,X W R)
P(X,R) = Py(X,R), ..., P«(X,R)

Relations
Uniformity P(X,R)~ R
Independence P(X,R) L R
Equivalence ~ P(X,R) ~ Q(X,R)

21

Encodings

P(X,R) ~ R’
/ P(R) ~ R’

P(XWY,R)

\ (R) P(R)
P(X,R) ~

22

Summary of the symbolic abstractions

Deduction
Uniformity for P(X, R) of length |R| < Deduction.

Unification and deduction constraints
Equivalence < unification and deduction constraints (with private

homomorphic symbol).

Static equivalence
Equivalence = static equivalence.

23

Summary of the symbolic abstractions

Deduction
Uniformity for P(X, R) of length |R| < Deduction.

Unification and deduction constraints
Equivalence < unification and deduction constraints (with private

homomorphic symbol).

Static equivalence
Equivalence = static equivalence.

— We obtain connections with widely studied questions

23

The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational

theories.

24

The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational

theories.

e If a program follows the uniform distribution when sampling
over a ring of characteristic two, it also does when sampling

over any Foq.

24

The abstraction

Easy to derive heuristics
We can use over and under approximations of the equational

theories.

e If a program follows the uniform distribution when sampling
over a ring of characteristic two, it also does when sampling

over any Foq.

e If two programs are not equivalent when sampling over Fy,
they are not equivalent over a ring of characteristic two.

24

The abstraction

Modular
There are many combination results for symbolic methods.

25

The abstraction

Modular
There are many combination results for symbolic methods.

e Easy to add support for free function symbols, or bilinear
pairings, or any disjoint equational theories.

25

Implementation

A generic library

SolvEq

26

A generic library

SolvEq

e handles deduction and static equivalence in rings and finite
fields;

26

A generic library

SolvEq

e handles deduction and static equivalence in rings and finite
fields;
e procedures/heuristics for uniformity (bijection computations)

and independence.

26

A generic library

SolvEq
EasyCrypt
e handles deduction and static equivalence in rings and finite
fields;

e procedures/heuristics for uniformity (bijection computations)

and independence.

26

A generic library

SolvEq

EasyCrypt MaskVerif

e handles deduction and static equivalence in rings and finite
fields;
e procedures/heuristics for uniformity (bijection computations)

and independence.

26

Easycrypt

Sample of Cramer Shoup proofs

swap{1} 16 -9; wp; swap -1; swap -1.
rnd (fun z = z + G1l.w{2} * G1.z2{2})
(fun z = z - Gl.w{2} * G1.z2{2}).
rnd.

wp; swap -1.

rnd (fun z = z + G1.w{2} * G1.y2{2})
(fun z = z - G1.w{2} * Gi.y2{2}).
rnd.

wp; swap -1.

rnd (fun z = z + Gl.w{2} * G1.x2{2})
(fun z = z - Gl.w{2} * G1.x2{2}).
rnd; wp; rnd; wp.

rnd (fun z = z / x{1}) (fun z = z * x{1}) = /=.

27

Easycrypt

Sample of Cramer Shoup proofs
17 tactic calls replaced by a single tactic, with content extracted

from cryptographic intuition.

rndmatch

(z1,
(z2,
(y1,
(y2,
(x1,
(x2,

(k
(z
(y
(x

>

>

>

>

Gl.z, fun z =
G1.z2)
Gl.y, fun z =
G1.y2)
Gl.x, fun z =
G1.x2)
Gl.k)
x , fun z = =z
Gl.u)
Gl.w).

z + G1.w{2} * G1.z2{2})
z + G1.w{2} * G1.y2{2})

z + G1.w{2} * G1.x2{2})

/ x{1})

28

MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

v Very fast;

v/ a lot of examples covered.

29

MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

<

" Very fast;
v/ a lot of examples covered.

% No information when heuristic fails;

X

no negative results;

% heuristic may fail for simple examples.

29

MaskVerif

Based on a fast heuristic to automatically verify masking schemes
(non interference).

&

" Very fast;
v/ a lot of examples covered.

% No information when heuristic fails;

X

no negative results;

% heuristic may fail for simple examples.

Improvements
o Witnesses of negative results

e New examples not covered by the old heuristic

29

Conclusion

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the

computational model.

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the

computational model.

e Link different probabilistic problems;

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the

computational model.

e Link different probabilistic problems;

e abstracted into term algebras;

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the

computational model.

e Link different probabilistic problems;
e abstracted into term algebras;

e derive algorithms from symbolic methods that are principled,

sound and/or complete;

30

Final words

The general idea
Use symbolic methods to simplify basic proof steps in the

computational model.

e Link different probabilistic problems;
e abstracted into term algebras;

e derive algorithms from symbolic methods that are principled,

sound and/or complete;

e implement and integrate the resulting algorithms inside
existing tools.

30

Final words

Future work
e automate the application of cryptographic assumptions;
e automate the verification of MPC protocols;

e find an efficient algorithm for general equivalence in finite
fields.

31

	Introduction
	An example
	A general Framework
	Implementation
	Conclusion

