
Capacity: an Abstract Model of Control
over Personal Data

Daniel Le Métayer and Pablo Rauzy
planete.inrialpes.fr/people/lemetayer

daniel·le-metayer@inria·fr
pablo.rauzy.name
pablo·rauzy@univ-paris8·fr

2019-03-18 @ CNRS, Paris
Journée du GT Méthodes Formelles pour la Sécurité 2019

OA version of the paper: hal-01638190

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 1 / 30

https://planete.inrialpes.fr/people/lemetayer/
https://pablo.rauzy.name/
https://hal.archives-ouvertes.fr/hal-01638190

Plan

▶ Control over personnal data
▶ Modeling control
▶ Characterizing control
▶ Evaluating concrete systems

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 2 / 30

Control over Personal Data

▶ The notion of privacy by control is predominant in the privacy literature.
▶ However, it lacks a formal definition.
▶ This makes it hard to check for compliance, to compare design options, etc.

→ We want a formal framework to specify the notion of control over personal data.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 3 / 30

Control over Personal Data
Control

▶ Formally capturing the notion of control is notoriously difficult.
▶ Control is about a potential rather than one particular realization.
▶ Existing control literature (e.g., access control and usage control) does not really
encapsulates the intuition underlying the notion of control over personal data.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 4 / 30

Control over Personal Data
Three dimensions of control

▶ In their 2015 paper*, Lazaro and Le Métayer identified three dimensions of control
over personal data.

▶ These three dimensions corresponds to the capacities for an individual:
• to perform actions on their personal data,
• to prevent others from performing actions on their personal data, and
• to be informed of actions performed by others on their personal data.

→ Based on this work, we built Capacity.

* http://script-ed.org/?p=1927

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 5 / 30

http://script-ed.org/?p=1927

Modeling Control with Capacity

▶ Capacity’s goal is to model control over personal data in a very general way.
▶ Thus, guiding principles of its design are abstraction and minimality.
▶ Basically, agents can perform operations on resources in given contexts.
▶ Control is modeled by requirements expressing constraints on those operations.

→ Running example for this: rudimentary photo sharing service.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 6 / 30

Modeling Control with Capacity
Running example: Album

▶ This talk uses a simple photo sharing service, named Album, as an example.
▶ Album is a centralized service where:

• users can upload, delete, and access photos in their album ;
• users can connect to each other to become friends ;
• users can see their friends photos ;
• users can tag theirs and their friends photos with their name or the names of friends ;
• users are notified when they are tagged in a photo by someone else.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 7 / 30

Modeling Control with Capacity
Objects

▶ There are four types of atomic objects in Capacity:
• Agents:
– agents model users and services,
– the set of agents is A,
– examples: Album (the service) and its users (Daniel, Pablo, …) ;

• Resources:
– resources model data, and typically personal data,
– the set of resources is R,
– examples: usernames (Pablo), users’ album (albumPablo), and photos ().

• Operations:
– operations model what can be performed on resources,
– the set of operations is O,
– examples: connect, upload, tag, access, delete ;

• Contexts:
– contexts model any external factors relevant to an operation,
– the set of contexts is C,
– examples: location, time, relationship between agents, purpose, exposure.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 8 / 30

Modeling Control with Capacity
Objects

▶ There are four types of atomic objects in Capacity:
• Agents:
– agents model users and services,
– the set of agents is A,
– examples: Album (the service) and its users (Daniel, Pablo, …) ;

• Resources:
– resources model data, and typically personal data,
– the set of resources is R,
– examples: usernames (Pablo), users’ album (albumPablo), and photos ().

• Operations:
– operations model what can be performed on resources,
– the set of operations is O,
– examples: connect, upload, tag, access, delete ;

• Contexts:
– contexts model any external factors relevant to an operation,
– the set of contexts is C,
– examples: location, time, relationship between agents, purpose, exposure.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 8 / 30

Modeling Control with Capacity
Objects

▶ There are four types of atomic objects in Capacity:
• Agents:
– agents model users and services,
– the set of agents is A,
– examples: Album (the service) and its users (Daniel, Pablo, …) ;

• Resources:
– resources model data, and typically personal data,
– the set of resources is R,
– examples: usernames (Pablo), users’ album (albumPablo), and photos ().

• Operations:
– operations model what can be performed on resources,
– the set of operations is O,
– examples: connect, upload, tag, access, delete ;

• Contexts:
– contexts model any external factors relevant to an operation,
– the set of contexts is C,
– examples: location, time, relationship between agents, purpose, exposure.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 8 / 30

Modeling Control with Capacity
Objects

▶ There are four types of atomic objects in Capacity:
• Agents:
– agents model users and services,
– the set of agents is A,
– examples: Album (the service) and its users (Daniel, Pablo, …) ;

• Resources:
– resources model data, and typically personal data,
– the set of resources is R,
– examples: usernames (Pablo), users’ album (albumPablo), and photos ().

• Operations:
– operations model what can be performed on resources,
– the set of operations is O,
– examples: connect, upload, tag, access, delete ;

• Contexts:
– contexts model any external factors relevant to an operation,
– the set of contexts is C,
– examples: location, time, relationship between agents, purpose, exposure.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 8 / 30

Modeling Control with Capacity
Objects

▶ There are four types of atomic objects in Capacity:
• Agents:
– agents model users and services,
– the set of agents is A,
– examples: Album (the service) and its users (Daniel, Pablo, …) ;

• Resources:
– resources model data, and typically personal data,
– the set of resources is R,
– examples: usernames (Pablo), users’ album (albumPablo), and photos ().

• Operations:
– operations model what can be performed on resources,
– the set of operations is O,
– examples: connect, upload, tag, access, delete ;

• Contexts:
– contexts model any external factors relevant to an operation,
– the set of contexts is C,
– examples: location, time, relationship between agents, purpose, exposure.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 8 / 30

Modeling Control with Capacity
Actions

▶ Actions model the application of an operation to a list of parameters in a context.
• Action opc(x1, . . . , xn) is the application of operation op to x1, . . . , xn in context c.
• Parameters xi can be resources or agents.

▶ Examples:
• connectc(Daniel),
• uploadc(, albumPablo),
• tagc(, Daniel).

▶ The set of actions is ∆.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 9 / 30

Modeling Control with Capacity
Relations

▶ We define three relations on atomic objects:
• Pers(r, a) expresses that resource r is a personal data of agent a,
• In(r, α) expresses that resource r is involved in action α,
• Trust(a, b) expresses that agent a trusts agent b.

▶ Examples:
• Pers(, Pablo),
• In(, tagc(, Pablo)),
• Trust(Pablo, Daniel).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 10 / 30

Modeling Control with Capacity
Requirements

▶ A requirement R is a relation CanR ⊆ A×∆× P(A)× P(A).

▶ Intuitively, CanR(a, α,E,W) means that:
• agent a can perform action α
• only if this action is enabled by all agents in E
• while all agents in W have to to be informed of it.

▶ Examples:
• CanR(Pablo, uploadc(, albumPablo), {Album}, {Album}),
• CanR(Daniel, uploadc(, albumPablo), {⊥}, {⊥}),
• CanR(Pablo, tagc(, Daniel), {Daniel, Album}, {Daniel, Album}).

▶ This single relation can express the three capacities of control of personal data:
• when x = a it expresses the capacity of x to perform action α,
• when x ∈ E it expresses the capacity of x to prevent action α,
• when x ∈ W it expresses the capacity of x to be informed of action α.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 11 / 30

Modeling Control with Capacity
Requirements

▶ A requirement R is a relation CanR ⊆ A×∆× P(A)× P(A).

▶ Intuitively, CanR(a, α,E,W) means that:
• agent a can perform action α
• only if this action is enabled by all agents in E
• while all agents in W have to to be informed of it.

▶ Examples:
• CanR(Pablo, uploadc(, albumPablo), {Album}, {Album}),
• CanR(Daniel, uploadc(, albumPablo), {⊥}, {⊥}),
• CanR(Pablo, tagc(, Daniel), {Daniel, Album}, {Daniel, Album}).

▶ This single relation can express the three capacities of control of personal data:
• when x = a it expresses the capacity of x to perform action α,
• when x ∈ E it expresses the capacity of x to prevent action α,
• when x ∈ W it expresses the capacity of x to be informed of action α.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 11 / 30

Modeling Control with Capacity
Abstract trace properties

▶ Requirements semantics is given by characterizing execution traces.
▶ Traces are characterized using four abstract properties:

• θ ⊢Requests(a, α):
– in trace θ, agent a attempts to perform action α,
– example: θ ⊢ Requests(Pablo, tagc(, Daniel)) ;

• θ ⊢ Enables(a, b, α):
– in trace θ, agent a enables the performance of action α by agent b,
– example: θ ⊢ Enables(Album, Pablo, tagc(, Daniel)),

θ ⊢ Enables(Daniel, Pablo, tagc(, Daniel)) ;

• θ ⊢Does(a, b, α):
– in trace θ, agent a performs action α on behalf of agent b,
– example: θ ⊢Does(Album, Pablo, tagc(, Daniel)) ;

• θ ⊢Notifies(a, b, c, α):
– in trace θ, agent a notifies to agent b the performance of action α on behalf of agent c,
– example: θ ⊢Notifies(Album, Daniel, Pablo, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 12 / 30

Modeling Control with Capacity
Abstract trace properties

▶ Requirements semantics is given by characterizing execution traces.
▶ Traces are characterized using four abstract properties:

• θ ⊢Requests(a, α):
– in trace θ, agent a attempts to perform action α,
– example: θ ⊢ Requests(Pablo, tagc(, Daniel)) ;

• θ ⊢ Enables(a, b, α):
– in trace θ, agent a enables the performance of action α by agent b,
– example: θ ⊢ Enables(Album, Pablo, tagc(, Daniel)),

θ ⊢ Enables(Daniel, Pablo, tagc(, Daniel)) ;

• θ ⊢Does(a, b, α):
– in trace θ, agent a performs action α on behalf of agent b,
– example: θ ⊢Does(Album, Pablo, tagc(, Daniel)) ;

• θ ⊢Notifies(a, b, c, α):
– in trace θ, agent a notifies to agent b the performance of action α on behalf of agent c,
– example: θ ⊢Notifies(Album, Daniel, Pablo, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 12 / 30

Modeling Control with Capacity
Abstract trace properties

▶ Requirements semantics is given by characterizing execution traces.
▶ Traces are characterized using four abstract properties:

• θ ⊢Requests(a, α):
– in trace θ, agent a attempts to perform action α,
– example: θ ⊢ Requests(Pablo, tagc(, Daniel)) ;

• θ ⊢ Enables(a, b, α):
– in trace θ, agent a enables the performance of action α by agent b,
– example: θ ⊢ Enables(Album, Pablo, tagc(, Daniel)),

θ ⊢ Enables(Daniel, Pablo, tagc(, Daniel)) ;

• θ ⊢Does(a, b, α):
– in trace θ, agent a performs action α on behalf of agent b,
– example: θ ⊢Does(Album, Pablo, tagc(, Daniel)) ;

• θ ⊢Notifies(a, b, c, α):
– in trace θ, agent a notifies to agent b the performance of action α on behalf of agent c,
– example: θ ⊢Notifies(Album, Daniel, Pablo, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 12 / 30

Modeling Control with Capacity
Abstract trace properties

▶ Requirements semantics is given by characterizing execution traces.
▶ Traces are characterized using four abstract properties:

• θ ⊢Requests(a, α):
– in trace θ, agent a attempts to perform action α,
– example: θ ⊢ Requests(Pablo, tagc(, Daniel)) ;

• θ ⊢ Enables(a, b, α):
– in trace θ, agent a enables the performance of action α by agent b,
– example: θ ⊢ Enables(Album, Pablo, tagc(, Daniel)),

θ ⊢ Enables(Daniel, Pablo, tagc(, Daniel)) ;

• θ ⊢Does(a, b, α):
– in trace θ, agent a performs action α on behalf of agent b,
– example: θ ⊢Does(Album, Pablo, tagc(, Daniel)) ;

• θ ⊢Notifies(a, b, c, α):
– in trace θ, agent a notifies to agent b the performance of action α on behalf of agent c,
– example: θ ⊢Notifies(Album, Daniel, Pablo, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 12 / 30

Modeling Control with Capacity
Abstract trace properties

▶ Requirements semantics is given by characterizing execution traces.
▶ Traces are characterized using four abstract properties:

• θ ⊢Requests(a, α):
– in trace θ, agent a attempts to perform action α,
– example: θ ⊢ Requests(Pablo, tagc(, Daniel)) ;

• θ ⊢ Enables(a, b, α):
– in trace θ, agent a enables the performance of action α by agent b,
– example: θ ⊢ Enables(Album, Pablo, tagc(, Daniel)),

θ ⊢ Enables(Daniel, Pablo, tagc(, Daniel)) ;

• θ ⊢Does(a, b, α):
– in trace θ, agent a performs action α on behalf of agent b,
– example: θ ⊢Does(Album, Pablo, tagc(, Daniel)) ;

• θ ⊢Notifies(a, b, c, α):
– in trace θ, agent a notifies to agent b the performance of action α on behalf of agent c,
– example: θ ⊢Notifies(Album, Daniel, Pablo, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 12 / 30

Modeling Control with Capacity / Abstract trace properties
Trace consistency

▶ A trace θ is consistent if:
• θ ⊢Does(c, a, α) =⇒ θ ⊢Requests(a, α),
• θ ⊢Notifies(a, b, c, α) =⇒ ∃d, θ ⊢Does(d, c, α).

▶ Intuitively, a trace is inconsistent if it includes:
• an action performed on behalf of an agent that has not requested it, or
• the notification of an action that has not been performed.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 13 / 30

Modeling Control with Capacity / Abstract trace properties
Trace completeness

▶ A trace θ is complete wrt requirement R where CanR(a, α,E,W) if:
• θ ⊢Requests(a, α) ∧ ∀b ∈ E, θ ⊢ Enables(b, a, α) =⇒ ∃c ∈ A, θ ⊢Does(c, a, α).

▶ Intuitively, a trace is complete if an action is always performed when:
• it has been requested, and
• it has been enabled by all necessary agents.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 14 / 30

Modeling Control with Capacity / Abstract trace properties
Trace compliance

▶ A trace θ is compliant with requirement R where CanR(a, α,E,W) if:
• ∀d ∈ A, θ ⊢Does(d, a, α) =⇒ ∀b ∈ E, θ ⊢ Enables(b, a, α),
• ∀d ∈ A, θ ⊢Does(d, a, α) =⇒ ∀b ∈ W, ∃c ∈ A, θ ⊢Notifies(c, b, a, α).

▶ Intuitively, a trace is compliant if all CanR constraint are met:
• no action is performed unless it is enabled by all its enablers, and
• all agents that have to be informed are notified.

▶ Compliance is noted θ |= R.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 15 / 30

Characterizing Control with Capacity

▶ We introduce four independent types of control:
• action control,
• observability control,
• authorization control,
• notification control.

▶ Each type comes with three levels of control:
• absolute control,
• relative control,
• lack of control.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 16 / 30

Characterizing Control with Capacity
Action control

▶ Action control describes an agent’s control on actions that it initiates.
▶ With regard to a requirement R, an agent a has:

• absolute action control over α if it does not depend on others to perform it:
– AAR(a, α) ⇐⇒ CanR(a, α,∅,W) ;

• relative action control over α if it depends only trusted agents:
– RAR(a, α) ⇐⇒ CanR(a, α,E,W) ∧ b ∈ E =⇒ Trust(a, b).

▶ Examples:
• Trust(Pablo, Album) =⇒ RAR(Pablo,uploadc(, albumPablo)),
• Trust(Pablo, Album) =⇒ RAR(Pablo,deletec(, albumPablo)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 17 / 30

Characterizing Control with Capacity
Observability control

▶ Observability control describes an agent’s capacity to perform actions that are
not observable by others.

▶ With regard to a requirement R, an agent a has:
• absolute observability control over α if it can perform α discreetly:
– AOR(a, α) ⇐⇒ CanR(a, α,E,∅) ;

• relative observability control over α if only trusted agents can know about it:
– ROR(a, α) ⇐⇒ CanR(a, α,E,W) ∧ b ∈ W =⇒ Trust(a, b).

▶ Examples:
• Trust(Pablo, Album) =⇒ ROR(Pablo,uploadc(, albumPablo)),
• Trust(Pablo, Album) ∧ Trust(Pablo, Daniel) =⇒ ROR(Pablo, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 18 / 30

Characterizing Control with Capacity
Authorization control

▶ Authorization control describes an agent’s control on actions initiated by others.
▶ With regard to a requirement R, an agent a has:

• absolute authorization control over α if it is the only agent that can prevent it:
– AHR(a, α) ⇐⇒ CanR(b, α, {a},W) ;

• relative authorization control over α if it is not the only agent having this capacity:
– RHR(a, α) ⇐⇒ CanR(b, α,E,W) =⇒ a ∈ E.

▶ Examples:
• AHR(Album, uploadc(, albumPablo)),
• RHR(Daniel, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 19 / 30

Characterizing Control with Capacity
Notification control

▶ Notification control describes an agent’s capacity to be informed about actions
performed by others.

▶ With regard to a requirement R, an agent a has:
• absolute notification control over α if it is the only agent that has the capacity to be
informed of it:
– ANR(a, α) ⇐⇒ CanR(b, α,E, {a}) ;

• relative notification control over α if it is not the only agent having this capacity:
– RNR(a, α) ⇐⇒ CanR(b, α,E,W) =⇒ a ∈ W.

▶ Examples:
• ANR(Album, uploadc(, albumPablo)),
• RNR(Daniel, tagc(, Daniel)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 20 / 30

Characterizing Control with Capacity
Extensions

▶ These types of control can be extended to resources and agents:
• for resources, by generalizing to all actions that involves the resource:
– e.g., AAR(a, r) ⇐⇒ ∀α ∈ ∆, In(r, α) =⇒ AAR(a, α) ;

• for agents, by generalizing to all the personal data of the agent:
– e.g., AAR(a) ⇐⇒ ∀r ∈ R,Pers(r, a) =⇒ AAR(a, r).

▶ Control lattice:
• it is easy to check that absolute control implies relative control ;
• using the order defined by implication, we have a lattice made of 34 forms of control for
each action, data, and agent.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 21 / 30

Evaluating Concrete Systems with Capacity

▶ Concrete traces are sequences of concrete events which can be clearly identified:
• HTTP requests and responses, SQL queries, file manipulations, etc.

▶ Modeling a concrete system in Capacity requires to:
• identify the sets of agents, resources, actions, and contexts ;
• define the conditions under which a concrete trace satisfies each abstract trace
property.

▶ Given this model it is possible to:
• compute the requirement that corresponds to the system,
• verify if the system satisfies a specific requirement,
• evaluate the types and levels of control of each agents.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 22 / 30

Evaluating Concrete Systems with Capacity
An example with Album

▶ In Album, concrete traces are sequences of the following events:
• U-registers(u): user u creates an account on Album ;
• U-uploads-pic(u, p): user u uploads a photo to their album ;
• U-requests-album(u1, u2): user u1 requests u2’s album ;
• U-submits-tag(u1, p, u2): user u1 tags u2 in photo p ;
• U-deletes-pic(u1, p): user u1 deletes photo p from their album ;
• U-requests-con(u1, u2): user u1 requests to connect with u2 ;
• U-accepts-con(u1, u2): user u1 accepts to connect with u2 ;
• U-rejects-con(u1, u2): user u1 rejects to connect with u2 ;
• U-disconnects(u1, u2): user u1 disconnects from u2 ;
• A-creates-account(u): Album creates u’s account ;
• A-publishes-pic(p, u): Album publishes photo p in u’s album ;
• A-serves-album(u1, u2): Album sends u1 the album of u2 ;
• A-connects(u1, u2): Album connects u1 and u2 ;
• A-disconnects(u1, u2): Album disconnects u1 and u2 ;
• A-tags-pic(u1, p): Album tags u1 in photo p ;
• A-notifies-req(u1, u2): Album notifies u2 of u1’s request to connect ;
• A-notifies-con(u1, u2): Album notifies u1 and u2 that they are connected ;
• A-notifies-tag(u1, p, u2): Album notifies u1 that they have been tagged in photo p by u2 .

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 23 / 30

Evaluating Concrete Systems with Capacity
Album: uploading a photo

▶ Let θn be the nth event in the concrete trace.
▶ We define our abstract properties as follows:

• θ ⊢Requests(u, uploadn(p, albumu))
⇐⇒ ∃m < n, θm = U-uploads-pic(u, p).

• θ ⊢ Enables(Album, u, uploadn(p, albumu))
⇐⇒ ∃m < n, θm = U-registers(u).

• θ ⊢Does(Album, u, uploadn(p, albumu))
⇐⇒ θn = A-publishes-pic(p, u).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 24 / 30

Evaluating Concrete Systems with Capacity / Album: uploading a photo
Control properties

▶ With these definitions we can prove that θ |= R such that:
• CanR(u, uploadn(p, albumu), {Album}, {Album}).

▶ Which in terms of control means that we have:
• RAR(u, uploadn(p, albumu)) if Trust(u, Album).
• ROR(u, uploadn(p, albumu)) if Trust(u, Album).
• AHR(Album, uploadn(p, albumu)).
• ANR(Album, uploadn(p, albumu)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 25 / 30

Evaluating Concrete Systems with Capacity
Album: tagging a friend

▶ Let θn be the nth event in the concrete trace.
▶ We define our abstract properties as follows:

• θ ⊢Requests(u1, tagn(p, u2))
⇐⇒ ∃m < n, θm = U-submits-tag(u1, p, u2).

• θ ⊢ Enables(u2, u1, tagn(p, u2))
⇐⇒ ∃m < n, θm = U-accepts-con(u2, u1) ∨ θm = U-accepts-con(u1, u2)

∧ ∄k,m < k < n, θk = U-disconnects(u2, u1) ∨ θm = U-disconnects(u1, u2).
• θ ⊢ Enables(Album, u1, tagn(p, u2))

⇐⇒ θn = A-tags-pic(u2, p).
• θ ⊢Does(Album, u1, tagn(p, u2))

⇐⇒ θn = A-tags-pic(u2, p).
• θ ⊢Notifies(Album, u2, u1, tagn(p, u2))

⇐⇒ θn+1 = A-notifies-tag(u2, p, u1).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 26 / 30

Evaluating Concrete Systems with Capacity / Album: tagging a friend
Control properties

▶ With these definitions we can prove that θ |= R such that:
• CanR(u1, tagn(p, u2), {u2, Album}, {u2, Album}).

▶ Which in terms of control means that we have:
• RAR(u1, tagn(p, u2)) if Trust(u1, Album) ∧ Trust(u1, u2).
• ROR(u1, tagn(p, u2)) if Trust(u1, Album) ∧ Trust(u1, u2).
• RHR(u, tagn(p, u)).
• RNR(u, tagn(p, u)).
• RHR(Album, tagn(p, u)).
• RNR(Album, tagn(p, u)).

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 27 / 30

Evaluating Concrete Systems with Capacity
Implementations comparison

▶ Types and levels of control allow to formally compare different systems.
▶ Studying alternative implementations of a given specification can be useful for
privacy by design.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 28 / 30

Conclusions and Perspectives

▶ Capacity provides a formal framework to reason about privacy in terms of control.
▶ The goal of this work is to serve as foundation for new privacy research and tools.
▶ Future work:

• find a better way than contexts to formally capture the notion exposure ;
• make a user-friendly interface to specify requirements ;
• model control aspects of personal data related laws such as the GDPR ;
• build model checking tools to automate requirement verification.

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 29 / 30

That was it. Questions?

Control over Personal Data
Control
Three dimensions of control

Modeling Control with Capacity
Running example: Album
Objects
Actions
Relations
Requirements
Abstract trace properties

Characterizing Control with Capacity
Action control
Observability control
Authorization control
Notification control
Extensions

Evaluating Concrete Systems with Capacity
An example with Album
Album: uploading a photo
Album: tagging a friend
Implementations comparison

Conclusions and Perspectives

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 30 / 30

Upsilon : Université populaire de sécurité informatique libre et ouverte

▶ Recherche en sécurité émancipatrice :
• auto-hébergement / décentralisation
• transfert par logiciels libres

▶ Enseignement technocritique :
• « code is law »
• écologie

▶ Éducation populaire :
• contrôler ses données
• conférences gesticulées

29 mars @ Paris 8
https://upsilon.sh/

Pablo Rauzy (Paris 8) Capacity: an Abstract Model of Control over Personal Data GT MFS 2019 31 / 30

https://upsilon.sh/

	Control over Personal Data
	Control
	Three dimensions of control

	Modeling Control with Capacity
	Running example: Album
	Objects
	Actions
	Relations
	Requirements
	Abstract trace properties

	Characterizing Control with Capacity
	Action control
	Observability control
	Authorization control
	Notification control
	Extensions

	Evaluating Concrete Systems with Capacity
	An example with Album
	Album: uploading a photo
	Album: tagging a friend
	Implementations comparison

	Conclusions and Perspectives

